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Abstract—To reduce the processing delay from the sequentially
running virtual network functions (VNFs) in a service function
chain (SFC), network function parallelism (NFP) is introduced
that allows VNFs of the SFC to run in parallel. Existing NFP
solutions only focused on improving parallelism benefits without
paying much attention to resource utilization while deploying
VNFs of SFCs. We take advantage of resource-delay dependency
to propose a flexible and efficient parallelized SFC placement
mechanism called FlexSFC which determines the optimal SFC
placement while reducing resource usage and meeting end-to-end
delay guarantees of the SFCs deployed. Initial results show that
FlexSFC guarantees the end-to-end delay requirement with better
resource utilization and SFC acceptance rate than the state-of-the-
art approaches.

I. INTRODUCTION

Network Functions Virtualization (NFV) is introduced to
address the limitations of traditional proprietary middleboxes
with more flexible Virtual Network Functions (VNFs). In NFV,
a network service is delivered by a series of predefined VNFs
called Service Function Chaining (SFC). Serially running VNFs
in an SFC imposes propagation delay as well as processing
delay; in some cases, higher processing delay becomes a
bottleneck for SFC acceptance by causing an increase in end-
to-end delay. To mitigate the impact caused by the processing
delay, Network Function Parallelism (NFP) is introduced which
tries to deploy VNFs of a given SFC request in parallel at one
of the physical servers provisioned for SFC placement [1].

As demonstrated in recent works [1], [2], if the operations
of two VNFs do not conflict then those VNFs can be executed
in parallel. As an example, Deep Packet Inspection (DPI) can
be executed in parallel with Flow Monitor (FM) as they only
inspect packet data streams without any modifications. On the
other hand, DPI and encryption cannot execute in parallel as
both might modify the packets. For instance, a typical sequen-
tial SFC, V NF1 → V NF2 → V NF3 → V NF4 → V NF5, is
shown in Fig. 1. The total processing delay of the sequential
SFC is 123ms, which can be reduced by 27% (33ms) through
parallelization of V NF2, V NF3, and V NF4 without effecting
the performance of the SFC.

Recently, SFC placement using NFP has received a lot of
attention [3]–[6]. But, these works overlooked the aspect of
resource utilization while placing SFC requests with considera-
tion of parallelism opportunities. Furthermore, these works have
two major limitations: (1) Parallelized SFC strains the system
resources. For instance, the copying and merging modules
are designed to copy packets to multiple VNFs running in
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Figure 1: Traditional sequential SFC Vs. SFC parallelism.
parallel and merge the parallelly processed packets to en-
able SFC parallelization in a network environment [1], [2].
It adds an overhead on network resources for delivering the
duplicate packets and computational overhead for copying and
merging the packet payloads; (2) In an SFC, the processing
delays of parallel VNFs are usually dissimilar, which leads
to packet deposition problem. Consequently, merging module
has to allocate additional memory resources to buffer the
early-arrived packets. A significant imbalance in processing
delays between parallelized VNFs may cause severe packet
deposition along with higher memory resource consumption. To
address the above challenges, we propose a flexible and efficient
SFC placement mechanism called FlexSFC. To overcome the
first limitation of existing works, FlexSFC assumes all the
parallelized VNF instances in an SFC request are deployed
in the same physical machine to avoid non-negligible cost of
duplicating and merging packets. To address the second lim-
itation, Adaptive Parallel Processing Mechanism (APPM) [4]
serializes some parallel VNFs to balance the delay based on
the peak VNF processing delay of the parallelized VNFs. But,
it fails to get full benefits of NFP. FlexSFC approaches this
problem differently by addressing the question of “How to
adjust resources allocated to the parallelized VNFs in order
to meet the peak delay of parallelized VNF in an SFC?”.
Recent studies [7], [8] have shown that within a given range
of resource allocation, the processing delay of a VNF is a
linearly non-increasing function of the resource allocated to
it. We have verified this behaviour by conducting experiments
on two different VNFs. FlexSFC balances the processing delay
of parallelized VNFs by flexibly allocating resources to VNFs
based on the peak VNF delay of parallelized VNFs, while not
losing the benefits of VNF parallelism. It helps to avoid the
extra allocation of resources to VNFs. As a result, the resources
saved can be used for other SFC requests, resulting in a higher
SFC acceptance rate.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

The service provider network is modelled as an undirected
graph G = (V,E), where V is the set of nodes (i.e., servers)
and E is the set of links which interconnect the nodes. Each
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node can host multiple instances of different VNFs, based on
its resource capacity. Each link has certain bandwidth capacity
and propagation delay. M denotes a set of SFCs and each
SFC request m ∈ M is represented as a vector (sm, dm, δm,
bm, scm), where sm and dm are the source and destination
nodes, bm represents the bandwidth demand, δm is the tolerable
end-to-end delay of the SFC request, and scm is an ordered
interconnection of VNFs through which packets are traversed.
In this work, we consider the case of each VNF requiring some
computing (CPU) resources which are measured in units.

Parallelism-based SFC: VNFs perform various operations
on ingress data packets. For non-conflicting VNFs, NFP enables
parallel VNF execution to quickly process the packets for the
same flow [1]. We follow the works [1], [9] to determine
whether any two VNFs of an SFC are independent based on
their operations and to construct the parallelism-based SFC
(PSFC). A PSFC is comprised of a series of Parallel Entities
(PEs), each of which consists of either a set of parallelizable
VNFs or a single VNF. Figs. 2b and 2c illustrate two possible
PSFCs that are composed from the sequential SFC shown in
Fig. 2a, where a blue dashed-line rectangle represents a PE. The
PSFC in Fig. 2c includes five PEs, each of which contains one
VNF, i.e., five VNFs will be sequentially executed in Fig. 2c.

End-to-end delay of PSFC: The processing delay of ith

PE (ψi) is denoted by PDψi, which depends on the VNF
that has the highest processing delay among all parallelized
VNFs in ψi. According to Eq. (1), only the VNF with the
highest processing delay determines the processing delay of the
PE, while processing delay due to other VNFs can be safely
ignored. τv represents the processing delay of VNF v.

PDψi = max
{v∈ψi}

τv (1)

The end-to-end delay of a packet traversing an PSFC is
defined as the sum of VNF processing delays and propagation
delays in the deployed path. It is calculated as follows:∑

ψi∈B,v∈V

PDψ
v
i +

∑
l∈psc

T (l) (2)

where PDψ
v
i represents the processing delay of PE ψi on

node v and B represents the set of PEs including source and
destination in a PSFC. psc denotes the path traversed by each
placed VNF and T (l) indicates the link delay of link l.

In an NFV-enabled network, the service provider requires
to optimally deploy the PSFC requests to maximize the profit
while ensuring the delay requirement of each PSFC request.
The problem can be described as: given: a physical network
topology G and a set of PSFC requests M , for each PSFC

Figure 3: Resource-delay dependency for Pktstat and Snort.

request, determine: 1) how to route the PSFC in G and
where to place VNF instances; 2) how to allocate processing
resources of the underlying nodes to the corresponding VNFs;
3) maximize the number of deployed PSFC requests, and 4)
ensure end-to-end delay requirements of the PSFC requests.

III. MOTIVATION

A. Resource-Delay Dependency

The works in [7], [8] show that the processing delay of a
VNF is impacted by the amount of resources allocated to it.
Processing delay of any VNF can be defined as a linear function
of system resources allocated to it [8]. It indicates that when
the amount of resources allocated to a VNF increases, the
processing delay decreases. However, this behaviour is only
observed for a certain range of resource allocation. It can be
defined by Eq. (3):

Dd
vnf = h(Φalloc) = α× Φalloc + β (3)

where α and β are given by Eq. (4) and Eq. (5), respectively.

α =
ζvnfmax − ζ

vnf
min

ηvnfmin − η
vnf
max

(4)

β =
(ζvnfmin × η

vnf
min)− (ζvnfmax × ηvnfmax)

ηvnfmin − η
vnf
max

(5)

Here, the range of the resources which can be allocated to
a VNF is [ηvnfmin, η

vnf
max] and the corresponding range of pro-

cessing delays is in [ζvnfmax, ζ
vnf
min]. Where, ζvnfmin is the minimum

delay which can be achieved when the maximum number of
resources (ηvnfmax) are allocated to VNF and similarly ζvnfmax is
the maximum delay which can be achieved when the minimum
resources (ηvnfmin) are allocated to the VNF. It should be noted
that after some point, allocation of the additional resources does
not help in decreasing the VNF processing delay further [8].

Experimental Observations: To assert this resource-delay
dependency in real-world scenarios, we choose two different
VNFs Snort and Pktstat for experimentation on a machine with
12 core Intel i7-4770 3.60 GHz CPU with 32 GB of RAM,
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Figure 4: An example of parallelized SFC placement considering flexible resource allocation.

Ubuntu 18.04 LTS. As shown in Fig. 3, we observe that the
processing delay of a VNF increases super-linearly with the
decrease in its resource allocation. It is worth noting that after
allocation of certain amount of resources, we did not observe
any significant reduction in delay. However, even with the same
resource allocation (in terms of CPU Cores), processing delay
varied depending on the VNF’s processing logic.

B. Why Accurate VNF Resource Allocation Matters?

Existing works did not consider the resource-delay depend-
ency and assigned a predefined, fixed amount of resources to
all parallelized VNF instances. Such strict resource allocation
can negatively impact the quality of the placement. A sig-
nificant difference in processing delays between parallelized
VNFs results in severe packet deposition along with higher
memory resource consumption. It can be overcome through
balancing the processing delays of parallelized VNFs in a PE by
scaling down the resources of VNFs (using the resource-delay
dependency) based on the peak VNF delay of the PE, without
losing the benefits of parallelization. This helps to avoid over
provisioning of resources to VNFs inside a PE. As a result,
the resources saved can be used for accepting SFC requests,
resulting in a higher acceptance rate. For example, as shown
in Fig. 1, the resources for V NF2 and V NF3 can be scaled
down before deploying PSFC to minimize the delay difference
among the three VNFs placed in parallel.

It should be noticed that all VNFs in a PE should be
deployed on the same physical server (node) to avoid the cost
of duplicating and merging packets. Eq. (6) is used to find the
delay difference among VNFs in a PE based on the peak VNF
processing delay and scales down the resources accordingly.
Where, ∆ti represents delay difference between ith VNF of ψj
PE (PDψ

i
j) and the peak VNF delay (PDψ

c
j) of the same PE.

∆ti =
∑
i∈ψj

PDψ
c
j − PDψ

i
j (6)

IV. HEURISTIC ALGORITHM FOR RESOURCE-AWARE
PARALLELIZED SFC DEPLOYMENT

This work mainly focuses on designing a mechanism for
deploying PSFC requests while avoiding unnecessary resource
allocation to VNFs and ensuring end-to-end delay requirement.
Since the PSFC placement problem is proved to be NP-hard [3],
[4], [9], we propose a flexible and efficient heuristic algorithm
named FlexSFC to determine the optimal parallelized SFC
placement while reducing resource usage and meeting end-to-
end delay guarantees of the PSFCs deployed.

Algorithm 1 provides an overview of FlexSFC. It takes a
network topology G, a set of PSFC requests, VNFs’ resource-
delay dependency table as inputs, and returns PSFC place-
ment and acceptance ratio as the output. VNF resource-delay
dependency table contains the information of maximum and
minimum resources allocated to a VNF and its corresponding
delays. SFCs are parallelized after finding the dependency
among VNFs, as provided in [3], [9]. We first initialize the
acceptance ratio Υ and the number of accepted requests µ to
zero, and the total number of requests is stored in variable λ.
Acceptance ratio is defined as the ratio of total number of PSFC
requests accepted over the total number of requests submitted.

FlexSFC algorithm consists of two parts. In the algorithm’s
first part (lines 2-13), we scale the PSFCs (∈M ). Line 2 sorts
the PSFCs in non-decreasing order based on total resources
required. Then, for each PSFC, the maximum delay among
each PE is calculated. Based on the maximum delay (PDψi)
calculated, we use Eqs. (3), (4), and (5) to scale down the VNFs
resources in each of the PE of the PSFC (lines 5-11). The new
set of PSFCs after scaling is stored in set M ′. In the second part
of the algorithm, we try to deploy PSFCs in the given network.
For each PSFC in M ′, k-shortest paths are computed using
Y en′s algorithm (line 15). These paths are computed based on
the link delays between source and destination, satisfying the
end-to-end delay and bandwidth constraints. To place VNFs of
a PE, we find a node with maximum residual capacity, deploy
all VNFs in it, and then place the remaining VNFs of PSFC in
that path. If all VNFs are deployed in the current path, increase
the accept count and move to the subsequent PSFC request;
otherwise, remaining k-paths are explored. Finally, it returns
the acceptance ratio.

A. An Illustrative Example

Fig. 4 shows a motivational example. In the network of
Fig. 4a, five different nodes are available with different resource
capacities to deploy VNFs. The value in square brackets at
each node represents the capacity available and edge represents
the link delay. Fig. 4b shows the PSFC request of four VNFs
where V NF2 and V NF3 can run in parallel. The resource
requirement and corresponding delay are represented at each
VNF. The tolerable end-to-end delay of this request is assumed
as 30 ms. We assume three SFC requests (i.e., SFC1, SFC2,
and SFC3) with the same set of VNFs for deploying in the
given network. As shown in Fig. 4c, a state-of-the-art scheme
named PARC [3] prefers to choose the path with the minimum
end-to-end delay. It places VNFs based on the maximum



Algorithm 1 FlexSFC Algorithm
Input: G(V,E), M, VNF resource-delay dependency table
Output: PSFC Placement and Acceptance Ratio (Υ).

1: Υ← 0; µ← 0; λ← ΣMs
2: Sort SFCs in non-decreasing order based on total resources

required
3: M ′ ← {}
4: for each s ∈M do
5: for each ψi ∈ Bs do
6: PDψi ← max{τv|v ∈ ψi}
7: for v ∈ ψi do
8: Scale VNFs using Eqs. (3), (4) and (5) based
9: on the value of PDψi

10: end for
11: end for
12: M ′ ← store the scaled SFC
13: end for
14: for each s′ ∈M ′ do
15: Kpaths ← compute k-shortest paths which satisfy

tolerable end-to-end delay and bandwidth constraints.
16: for each path k ∈ Kpaths do
17: Find the node with maximum residual resources

and place the parallelized VNFs in that node
18: Deploy rest of the VNFs in the path
19: if path k is able to place s′ then
20: µ← µ+ 1
21: break
22: end if
23: end for
24: end for
25: Υ← µ/λ
26: return Υ

residual resources at nodes along the path and places paral-
lelized VNFs on the same node. Thus, SFC1 is deployed as
follows: A → B(V NF1, V NF2, V NF3, V NF4) → E → F .
Resultantly, SFC2 and SFC3 are rejected due to lack of
resource availability. Even if we consider other paths (i.e.,
A → B → D → F and A → C → E → F ) which meet the
delay requirement, PARC failed to find nodes with sufficient
resource availability.

As shown in Fig. 4d, our proposed approach FlexSFC
considers the VNF resource-delay dependency for parallelized
VNFs and scales down the resources to VNFs in order to
minimize the processing delay difference among the paral-
lelized VNFs. After scaling down the resources, the total
amount of required resources for the parallelized VNFs (i.e.,
V NF2 and V NF3) is reduced to 5 from 8 units. Note that
the resource-delay dependency table for V NF3 is presented
in Fig. 4b. As a result, FlexSFC accepts all three SFC re-
quests. SFC1, SFC2, SFC3 are deployed on the following
paths: A → B(V NF1, V NF2, V NF3, V NF4) → E → F ,
A → B → E(V NF1) → F (V NF2, V NF3, V NF4), and
A(V NF1)→ C(V NF2, V NF3)→ E(V NF4)→ F , respect-

ively.
V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed FlexSFC
algorithm using the well-known USNET network topology. To
evaluate the performance, we developed a C++ based simulator.
The network topology and SFC request parameters are taken
from [4], [5], which are shown in Table I. Each experiment is
repeated 50 times and average results are presented. Similar
results are obtained for the large scale CORONET network
topology but not included due to space limitations.

Performance comparison: We compare FlexSFC with the
following three state-of-the-art algorithms: 1) PARC [3]: It
places VNFs based on the maximum residual resources at
nodes and assumes to deploy all of the parallelized VNFs in
the same server; 2) NFP [1]: It only allows to place entire
SFC in one server; 3) FRAM [8]: FRAM did not consider
parallelism in SFC placement, instead it focused on resource-
delay dependency and allocating resources to VNFs to meet
end-to-end tolerable delay.

Performance metrics: To evaluate FlexSFC, we consider the
following performance metrics: 1) SFC acceptance ratio: It is
the ratio of SFC requests accepted over the total requests. An
SFC request is said to be accepted when its end-to-end delay
requirement is met; 2) Average resource utilization: It is the
ratio of remaining resources after placing the SFCs over the
total resources; 3) Average end-to-end delay: It is the average
delay for each SFC taken after the placement of SFCs.

A. Simulation Results

Acceptance Ratio vs Chain length: Fig. 5a presents the
average rate of accepted SFC requests achieved, where the
number of SFCs is fixed as 250. It can be observed that, as
the SFC length increases, the acceptance ratio decreases for all
the algorithms, but FlexSFC always achieves better acceptance
ratio than NFP, PARC and FRAM approaches. It is because of
FlexSFC scales down the resources of the parallelized VNFs
and the resources saved are used to accommodate other SFCs.
FRAM also follows the scaling approach, but it does not take
parallelism into account. Thus, FlexSFC achieves a higher
average acceptance ratio, it accepts up to 41%, 33%, and 31%
more SFC requests over NFP, PARC, and FRAM, respectively.

Acceptance Ratio vs Number of SFCs: Fig. 5b depicts the
average rate of accepted SFCs with respect to the total number
of SFCs, which varies from 100 to 500 and has a fixed SFC
length of 6. The results show that the acceptance ratio decreases
as the number of SFCs increases, however, FlexSFC accepts up
to 23%, 18%, and 18% more SFC requests over NFP, PARC
and FRAM, respectively.

Resource utilization over varying number of SFCs: Fig. 5c
shows the percentage of remaining resources for the same set of

Table I: Simulation Parameters
Parameter Range Parameter Range
Length of SFC requests 4-8 Link delay 5-10 ms
Resources at each Node 200-700 Processing delay 1-20 ms
End-to-End latency 110-130 ms Number of SFCs 100-1000
Requested bandwidth 100-300 Mbps Link bandwidth 5-10 Gbps



(a) Acceptance Ratio vs SFC length. (b) Acceptance Ratio vs Number of SFCs. (c) Remaining resources vs Number of SFCs.
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Figure 5: Comparison of FlexSFC with NFP, PARC, and FRAM using USNET topology.

SFCs considered in Fig. 5b. Fig. 5c shows that NFP has large
number of remaining resources as it tries to accommodate the
entire SFC in a single server, while FRAM, PARC, and FlexSFC
consume almost all the resources as the number of SFC requests
increases. As shown in Fig. 5c, FlexSFC saves around 1.3× of
the resources when the number of SFCs are 200. For the same
requests, FlexSFC accepts more SFCs than other approaches,
as shown in Fig. 5b.

Average end-to-end delay with varying number of SFCs:
Fig. 5d shows the average end-to-end delay taken by each
SFC with respect to number of SFCs which varies from 200
to 400 and SFC length is fixed at 6. The results show that
NFP deploys SFCs with less average end-to-end delays as it
places entire SFC in the same server and the average end-to-
end delay incurred by FlexSFC is also close to NFP. FRAM
shows higher end-to-end delay because it does not consider
SFC parallelization.

Results with varying node capacity: Fig. 5e shows the impact
of node capacity on SFC acceptance ratio with respect to
total resource available at each node which varies from 200
to 700. The results show that as the capacity of node increases,
the acceptance ratio for all algorithms increases, but FlexSFC
shows better acceptance ratio as compared to NFP, PARC, and
FRAM. It is because of FlexSFC saves a significant amount
of resources by scaling down resources of parallelized VNFs.
FlexSFC accepts up to 19%, 13% and 12% more SFC requests
over NFP, PARC, and FRAM, respectively.

VI. CONCLUSIONS

In this work, we proposed FlexSFC to determine the optimal
SFC placement with minimizing resource consumption while

providing delay assurance. Results show that FlexSFC guar-
antees the end-to-end delay requirement with better resource
utilization than the state-of-the-art approaches, reducing up to
1.3× of resource consumption and increasing the acceptance
rate by 40%. In future, we will extend this work by proposing
a strategy to allocate resources in dynamic traffic environments.
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